
International Workshop on Coupled Methods in Numerical Dynamics
IUC, Dubrovnik, Croatia, September 19th -21st 2007

OpenFOAM: A C++ Library for Complex
Physics Simulations

Hrvoje Jasak1;2, Aleksandar Jemcov3, ·Zeljko Tukovi¶c2

1 Wikki Ltd, United Kingdom
2 Faculty of Mechanical Engineering and Naval Architecture,

University of Zagreb, Croatia
3 Development Department, Ansys/Fluent Inc, USA

Abstract. This paper describes the design of OpenFOAM, an object-
oriented library for Computational Fluid Dynamics (CFD) an d struc-
tural analysis. E±cient and °exible implementation of comple x physi-
cal models in Continuum Mechanics is achieved by mimicking t he form
of partial di®erential equation in software. The library pro vides Fi-
nite Volume and Finite Element discretisation in operator f orm and
with polyhedral mesh support, with relevant auxiliary tool s and sup-
port for massively parallel computing. Functionality of Op enFOAM is
illustrated on three levels: improvements in linear solver technology with
CG-AMG solvers, LES data analysis using Proper Orthogonal D ecom-
position (POD) and a self-contained °uid-structure interac tion solver.

Key words: object oriented, C++, scienti¯c computing, FSI, °uid-
structure interaction, POD, proper orthogonal decomposit ion, iterative
solver, CG-AMG

1. Introduction

Expansion of Computational Continuum Mechanics (CCM) in engineering
design is mirrored in the maturity of commercial simulation tools in the mar-
ket. In terms of numerical techniques, structural analysisis dominated by the
Finite Element Method (FEM), while °uid °ow is regularly handl ed using the
Finite Volume Method (FVM) of discretisation. Leading soft ware combines ac-
curate and robust numerics with an impressive range of physical models under a
general-purpose Graphical User Interface (GUI). Current simulation challenges
are related to integration and automation of simulation tools in a Computer
Aided Engineering (CAE) environment, including automatic geometry retrieval,
surface and volume meshing and sensitivity and optimisation studies.

In terms of solver settings and user expertise, Computational Fluid Dynam-
ics (CFD) is considerably behind structural analysis, making the problems of

¤ Correspondence to: Hrvoje Jasak, E-mail: h.jasak@wikki.co.uk .

1

2 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

software development and usability more acute. Range and quality of physical
models, solver settings and solution algorithms, as well asthe lack of robust
automatic solution control brings considerable complexity to the user.

Current state of solver development aims to produce monolithic general-
purpose tools, trying to tackle all physical problems for all users. A number of
consequences arises:

² Simulation software tends to be exceedingly complex due to interaction
between numerous physical models, solution strategies andsolver settings.
This leads to development bottle-necks and di±culties in testing and val-
idation { with increased code maturity and expanding capability matrix,
code development grinds to a halt;

² While it is possible to cater for many \typical" combination s of physical
models, user requirements are more general: they may involve experimen-
tal material properties, additional equations in the system or coupling with
multiple external packages into simulation networks. To answer such needs,
user-de¯ned extensions to the built-in functionality are a must. For con-
venient and e±cient user extensions, software must open its architecture
to a certain level;

² Monolithic software necessarily implies that for any set ofphysics only a
small subset of functionality is being used. The impact of unused or in-
compatible model combinations remains, typically in unnecessary memory
usage;

² A drawback of monolithic tools is tendency to use identical discretisation
and numerics even when they are clearly sub-optimal, simplybecause they
\¯t into the framework";

² Economies of scale and price/performance for each new feature dictate
which new models will be implemented, with a preference for established
physics and recognised customer needs.

In spite of best e®orts, all CCM needs will never be catered forin this
manner. This is particularly clear when one examines the true scope of con-
tinuum modelling, including non-traditional simulations , e.g. electromagnetics,
magneto-hydrodynamics; coupled simulations like 1-D/3-Dnetwork simulations
and °uid-structure interaction [1, 2] and even more general complex trans-
port/stress models [3, 4].

The limiting factor in such cases is not lack of industrial interest or physical
or numerical understanding, but a combination of complex software and closed
architecture. At the same time, one should appreciate that abulk of physi-
cal modelling, discretisation, numerics and linear solverexpertise implemented
in commercial CFD is a product of academic research available in open litera-
ture. The software provides an e±cient solution framework, including geometry
handling, mesh generation, solution, post-processing anddata analysis, while

OpenFOAM for Complex Physics 3

implementing known numerics and physical models. Furthermore, software en-
gineering issues like computational e±ciency, high performance computing and
user support are handled in a centralised manner, reinforcing the complexity
and rigidity of the system. As an illustration, while all com mercial CFD codes
contain e±cient linear equation solvers, it is virtually imp ossible to re-use this
component as a stand-alone tool.

In this paper we shall examine how modern programming techniques impact
the state-of-the-art in CFD software, extending the reach of continuum modelling
beyond its current capabilities. The software of which this study is based is
OpenFOAM [5, 6, 7], an Open Source [8] object-oriented library for numerical
simulations in continuum mechanics written in the C++ progr amming language
[9, 10]. OpenFOAM is gaining considerable popularity in academic research and
among industrial users, both as a research platform and a black-box CFD and
structural analysis solver. Main ingredients of its designare:

² Expressive and versatile syntax, allowing easy implementation of complex
physical model;

² Extensive capabilities, including wealth of physical modelling, accurate and
robust discretisation and complex geometry handling, to the level present
in commercial CFD;

² Open architecture and open source development, where complete source
code is available to all users for customisation and extension at no cost.

In what follows, we shall start with some basic principles ofObject Orienta-
tion (OO) in Section 2.. Section 3. presents ¯ve main objects of the OpenFOAM
class hierarchy and their interaction. Section 4. shows how̄eld algebra imple-
mented in OpenFOAM can be used in complex post-processing onthe example of
Proper Orthogonal Decomposition (POD). The paper continues with illustrative
simulation examples in Section 5., including Large Eddy Simulation (LES), lin-
ear equation solver tests, POD post-processing of LES data and °uid-structure
interaction using OpenFOAM and is closed with a summary, Section 6.

2. Object Orientation in Numerical Simulation Software

Complexity of monolithic functional software stems from its data organi-
sation model: globally accessible data is operated on by a set of functions to
achieve a goal. Here, each added feature interacts with all other parts of the
code, potentially introducing new defects (bugs) { with the growing size, the
data management and code validation problem necessarily grows out of control.

Object orientation attempts to resolve the complexity with a \divide and
conquer" approach, using the techniques listed below.

Data Encapsulation. Object-oriented software design [10] aims to break the
complexity by grouping data and functions together and protecting the data
from accidental corruption through compilation errors. Th e driving idea is to

4 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

recognise self-contained objects in the problem and place parts of implementation
into self-contained types (classes) to be used in building the complexity. A C++
class consists of:

² A public interface, providing the capability to the user;

² Someprivate data, as needed to provide functionality.

As an example, consider a sparse matrix class. It will store matrix coe±cients
in its preferred manner (private data) and provide manipulation functions, e.g.
matrix transpose, matrix algebra (addition, subtraction, multiplication by a
scalar etc.). Each of these operates on private data in a controlled manner
but its internal implementation details are formally indep endent of its interface.

Operator Overloading. Classes introduce new user-de¯ned type into a problem
description language, which encapsulate higher-level functionality in a way which
is easy to understand. For clarity, the \look and feel" of operations on new
objects needs to closely resemble the existing software. Thus, matrix algebra
should have the same syntax as its °oating point counterpart: A + B, where A
and B are matrices represents a summation operation, just as it does in a + b
for °oating point numbers.

Syntactically, this leads to a set of identical function names with di®erent
arguments. Resolving the \correct" functional type from fu nction arguments
from the available set is termedoperator overloading, automatically executed by
the C++ compiler.

Object Families and Run-Time Selection. In many situations, one can recognise
sets of object that perform the same function, based on identical data. As an
example, consider a Gauss-Seidel linear equation solver and a preconditioned
Conjugate Gradient solver. Both operate on a linear system [A][x] = [b] to
reach its solution [x]. Each algorithm will have its own controls (number of
sweeps, solution tolerance, type of preconditioner) and di®erent e±ciency, but
functionally they play the same role in the software.

In object orientation, such cases formclass families. In C++, they are en-
coded byclass derivation and virtual functions . Here, the software recognises a
common interface and interchangeable functionality of family members and im-
plements them in isolation of each other, further breaking down the complexity.
Similar situation in various guises appears throughout thenumerical simulation
software: consider multiple convection di®erencing schemes, gradient calculation
algorithms, boundary conditions, turbulence modelsetc.

Generic Programming. In some cases, software operations are independent of
the actual data type. Consider the example of sorting a list of data using a
bubble-sort algorithm: sequence of operations is independent of container con-
tent, provided a compareand swapfunction is available. The power of generic
programming is in the fact that identical code can be used fornumerous data

OpenFOAM for Complex Physics 5

types and can be validated only once. In practice, the C++ compiler oper-
ates on the generic code to automatically generate and optimise type-speci¯c
implementation.

In numerics, examples of generic programming appear throughout the soft-
ware. Consider for example, a Dirichlet boundary condition: its functionality
is the same, no matter whether it operates on a scalar, vectoror tensor ¯eld.
The same is true for convective and di®usive transport, gradient schemes, ¯eld
representation (independent of the mesh location and algebraic type) and many
others.

Combination of the above makes a strong baseline for e±cient and versatile
software. It remains to be seen how objects are de¯ned and how they interact
with each other in working software.

Some Common Myths: How Fast is Your C++? In late 1990s, a discussion
on computational overheads of object orientation and implications for \object-
oriented numerical simulation software" raged in the scienti¯c community. The
basic argument was that code execution overheads associated with new program-
ming techniques make C++ prohibitively expensive for numerically intensive
codes.

Over the last 10 years, the exact opposite has been emphatically proven.
High-level language built through object orientation allow the software devel-
oper to split the problem into several levels and concentrate on e±ciency where
it should naturally be resolved. Common and well-known rules apply: low-level
data layout must follow the computer architecture (packed arrays), loop opti-
misation is achieved by avoiding forking and function calls, vector- and pipeline
instruction and data organisation is enforced. If anything, a high-level type-safe
language like C++ makes this job easier: the user of generic container classes can
accept optimisation at zero cost as changes appear only in low-level object. Com-
bining this with inline instructions in C++ and careful use of virtual functions
[10] results in the code which at worst matches the performance of procedural
languages like Fortran and C but in a more convenient interface. Ultimately, it
is the skill of the programmer and not the programming language that drives
the e±ciency, which is probably more true in a complex and expressive language
like C++.

3. Five Main Objects in OpenFOAM

With the aim of writing a general-purpose CCM simulation tool, we can state
that a natural language of continuum mechanics already exists: it is a partial
di®erential equation. Therefore, attempting to represent di®erential equations in
their natural language in software is a reasonable development goal for a general-
purpose CCM tool in an object oriented framework. This is the fundamental
thinking behind the design of OpenFOAM.

Looking at the example of a turbulence kinetic energy equation in Reynolds

6 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

Averaged Navier-Stokes (RANS) models:

@k
@t

+ r ² (u k) ¡ r ² [(º + º t)r k] = º t

·
1
2

(r u + r uT)
¸ 2

¡
²o

ko
k; (1)

we shall follow the path to its encoded version in OpenFOAM, Fig. 1.

solve
(

fvm::ddt(k)
+ fvm::div(phi, k)
- fvm::laplacian(nu() + nut, k)

== nut*magSqr(symm(fvc::grad(U)))
- fvm::Sp(epsilon/k, k)

);

Figure 1. C++ representation of the k-equation, Eqn. (1), in OpenFOAM.

Correspondence between Eqn. (1) and Fig. 1. is clear, even with limited
programming knowledge and without reference to object-orientation or C++.

OpenFOAM is a substantial software package with extensive capabilities;
analysing it in detail is beyond the scope of this study. In what follows, we shall
work on recognising the main objects from the numerical modelling viewpoint
appearing in Fig. 1. and encoding them in software.

3.1. Space and Time

The ¯rst point of order in ¯eld-based discretisation is to capt ure the space
and time relevant for the simulation. The space is captured as a computational
mesh, consisting of a number of non-overlapping elements, while the temporal
dimension is split into a ¯nite number of time-steps.

Computational Mesh. Objects needed to describe a computational mesh are
points, faces, cells and boundary patches. OpenFOAM implements polyhedral
mesh handling[11], where a cell is described as a list of faces closing its volume,
a face is an ordered list of point labels and points are gathered into an ordered
list of (x; y; z) locations. Additionally, boundary faces of a mesh are grouped
into patchesto simplify the speci¯cation of boundary conditions.

Recognising objects seems trivial: apoint or a vector , consisting of three
°oating point values, a face and a cell . Functionality of each and their private
data is also clear: examples would include functions returning a face normal
vector or a cell volume.

Furthering the capabilities of the mesh class, there also exists a high-level
mesh-related functionality that \belong" to the mesh class. For example, auto-

OpenFOAM for Complex Physics 7

matic mesh motion, topological mesh changes (e.g. sliding interfaces, cell layer-
ing etc.) and adaptive mesh re¯nement perform the same function for both the
FVM and FEM. Implementing them centrally signi¯cantly impro ves the software
design and promotes code re-use.

Time Acting as Object Database. In the temporal dimension, things are simpler:
it is su±cient to track the time step count and time increment ¢ t. Further to
this, there is a set of database operations associated with time-marching and
with related needs. For example, simulation data output should be performed
everyn time-steps orx seconds of computational time, solver controls needs to be
updated in intervals etc. The time class in OpenFOAM handles both functions.

3.2. Field Variable

Continuum mechanics operates on ¯elds of scalars, vectors and tensors, each
of which is numerically approximated as a list of typed values at pre-de¯ned
points of the mesh. The ¯rst set of objects involves tensorialtypes with asso-
ciated algebra, typically consisting of ¯xed-length containers. Thus, a vector
class consists of three °oating point numbers and vector operations: addition
subtraction, scalar multiplication, magnitude, dot- and cross-productsetc. Ar-
bitrary rank tensor classes are de¯ned in the same manner.

Field: List with Algebra. In ¯eld operations, one regularly operates on col-
lections of identical types, performing the same function. Thus, a ¯eld-based
dot-product of a and b involves looping over all elements in a list and storing
the result in another list. A Field class uses short-hand for implied looping
operations: for vector ¯elds a and b:

scalarField c = a & b;

will perform the looping, calculate the dot-product and store the result into a
new ¯eld object called c.

Patch Field: Boundary Condition. To describe a boundary condition, aField
class needs to carrybehaviour in addition to its values. For example, afixedValue
¯eld carries its values but shall not change on assignment: its value is ¯xed. Some
other cases, like afixedGradient ¯eld class can \evaluate" boundary values,
given the internal ¯eld and a surface-normal gradient.

Note that a collection of patch ¯elds of di®erent types constitutes a family
of related classes: each calculates its value based on behaviour, but does the job
in its own speci¯c way.

Geometric Field. While automated ¯eld algebra is convenient shorthand, a list
of values does not provide the complete picture. For visualisation or discretisa-
tion, a Field needs to be given spatial dependence: how are the values arranged
in space and what property they describe. This is encoded by association with

8 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

a mesh, boundary condition speci¯cation (patch ¯elds) and physical dimension
set. A combination of the three constitutes a genericGeometricField .

Looking at its structure, it quickly becomes clear that ¯eld a lgebra functions
follow the same pattern no matter if the ¯eld consists of scalar, vector or tensor
values or if it is stored on mesh points or cell centres. For further convenience, all
¯eld operations are dimensionally checked: summation of a velocity ¯eld (m =s)
and a temperature gradient ¯eld (K =s) is easily °agged as invalid.

3.3. Matrix and Linear System

Functionality and interface of sparse matrix class, a linear system:

[A][x] = [b] (2)

and associated linear solvers is clear. It su±ces to say that code organisation
as presented above allows the FEM and FVM discretisation to share sparse
matrix implementation and solver technology, resulting in considerable code re-
use. True bene¯t of such code organisation will become obvious when attempting
closely coupled simulation: sharing matrix format and implementation between
coupled solvers is extremely useful.

3.4. Discretisation Method

Software functionality described above makes no referenceto the type or or-
der of discretisation to be implemented. This indicates theclasses mentioned
above can be re-used without change, with associated bene¯t of code compact-
ness and modular validation.

Keeping in mind the code layout in Fig. 1. we shall handle the discretisation
in OpenFOAM on a per-operator basis: if operators can be assembled at will,
wealth of continuum mechanics equations can be tackled withthe same toolkit.
To simplify the discussion, we shall refer to the FVM discretisation as a speci¯c
example.

Interpolation, Calculus and Method. A discretisation method can be separated
into three basic functions:

² Interpolation , which allows us to evaluate the ¯eld variable between compu-
tational points, based on prescribed spatial and temporal variation (shape
function);

² Di®erentiation, where calculus operations are performed on ¯elds to create
new ¯elds. For example, given a FVM pressure ¯eldvolScalarField p ,

volVectorField g = fvc::grad(p);

creates a new FVM vector ¯eld of pressure gradient. Its boundary condi-
tions and cell values are calculated fromp. Calculus operations in Fig. 1.
carry the fvc:: pre¯x, denoting Finite Volume Calculus;

OpenFOAM for Complex Physics 9

² Discretisation operates on di®erential operators (rate of change, convec-
tion, di®usion), and creates a discrete counterpart of the operator in sparse
matrix form. Discretisation operators in Fig. 1. carry the fvm:: pre¯x.

We can now decode the contents of Fig. 1. with some clarity:

² k, epsilon and U represent FVM ¯elds of scalars and vectors, storing
lists of values associated with a computational mesh. Each ¯eld carries
its internal (cell) values of appropriate type (scalar , vector) and bound-
ary conditions on a per-patch basis, combining face values and behaviour
(Dirichlet, Neumann or mixed boundary condition);

² Field calculus operations are used to create complex ¯eld expressions, in-
cluding ¯eld algebra (nu + nut) or calculus operations (fvc::grad(U)).
This is used to assemble the source terms and auxiliary ¯elds;

² Discretisation of each operator (e.g. fvm::laplacian(mu() + nut, k))
creates a sparse matrix, which are put together using matrixalgebra op-
erations to form a linear system of equations;

² The solve function chooses an appropriate linear equation solver based
on the matrix structure, which evaluates k at computational points; this is
followed by the boundary condition update, where the behaviour of each
condition is dictated by its type.

The identical set of operations is performed in all CFD codes{ the di®erence
in OpenFOAM is the clarity and °exibility of its programming i mplementation,
as shown in Fig. 1.

Looking at the high-level numerical simulation language wehave assem-
bled, implementation of various complex physical models now looks very simple.
Fringe bene¯ts from object orientation as implemented in OpenFOAM imply
considerable code re-use (mesh, matrix, ¯eld, linear solver, boundary condition)
and layered development. For example, internal implementation of a linear alge-
bra module may be changed, with minimal impact on the rest of the software {
an ideal software development situation.

3.5. Physical Modelling Libraries

Having recognised object families at discretisation level, the exercise can
now be repeated in the physics modelling framework. For example, one could
clearly see that all RANS turbulence models in e®ect provide the same func-
tionality: evaluating the Reynolds stress term u0u0 in the momentum equation.
Grouping them together guarantees inter-changeability and decouples their im-
plementation from the rest of the °ow solver. In such situation, the momentum
equation communicates with a turbulence model through a pre-de¯ned interface
(the model will contribute a discretisation matrix) and no s pecial knowledge of
a particular model is needed. In practical terms, a new turbulence model is
implemented by creating a class capable of calculatingu0u0 in its own particular

10 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

way: standard k ¡ ² model [12] and a Reynolds Stress Transport model [13] di®er
only in the way how they perform their function.

Similar modelling libraries appear throughout the code: Newtonian and non-
Newtonian viscosity models, material property models, combustion modelsetc.
Model families are grouped into libraries and re-used by allrelevant applications.

3.6. Physics Solver

Simulation software described so far resembles a numericaltool-kit used to
assemble various physics solvers. Physical modelling capabilities of OpenFOAM
include a wide range of °uid and structural analysis models, with emphasis on
coupled and non-linear equation sets. In all cases, base mesh handling, ¯eld
algebra, discretisation, matrix and linear solver support etc. is shared.

To avoid unnecessary complexity at the top-level, each physics solver is im-
plemented as a stand-alone tool, re-using library components as the need arises.
Capability of such solvers is underpinned by a combination of complex geometry
support and parallelisation. The ¯rst is supported by the mesh class, while the
second remains encapsulated in the linear algebra functionality and discretisa-
tion method, with no impact at the top-level physics solver.

Extension to other areas of CCM follows naturally: solving structural anal-
ysis equations, including non-linear material propertiesis a simple modi¯cation
on the equation set. Other non-standard simulation areas are tackled on a case-
by-case basis, building a custom solver from the available tool-kit. A result of
such development is a customised and optimised solver for each physics segment,
which is both e±cient and easy to understand.

4. Data Manipulation: Proper Orthogonal Decomposition

Quite apart from its advantages in complex physics modelling, the tool-kit
approach encourages development of auxiliary CCM tools notpresent in closed-
architecture packages or leading commercial software. A good example of this
is Proper Orthogonal Decomposition (POD), described below.

Consistency of the mathematical de¯nition of ¯eld algebra wit h its C++
implementation allows arbitrary manipulation of computed ¯elds to produce new
data ¯elds. Performing algebraic operations such as addition and subtraction,
scaling, scalar products,etc. on the result enables easy computations of derived
quantities which aid in understanding the solution. In addition to visualising
vector components, streamlines and similar, one can easilyassemble a reduced
order basis using the Proper Orthogonal Decomposition (POD) to represent
coherent structures in °uid °ow [14, 15].

POD, also known as Principal Component Analysis or KarhunenLoµeve Ex-
pansion, is based on the computation of the best linear basisthat describes the
dominant dynamics of the problem. Optimality of a POD basis is obtained from
the fact that the basis vectors © are obtained by maximising the following cost

OpenFOAM for Complex Physics 11

function:

max
ª

E
³

j(U; ª) j2
´

(ª ; ª)
=

E (j(U;©)j)
(©; ©)

: (3)

Here, symbol (¢; ¢) represents the inner product in the L 2 space, andE is the
mathematical expectation over a set of ensemble functions.This optimisation
problem can be solved by variational methods and the solution is given by:

Z 2¼

0
R(x; x 0)©(x0)dx0 = ¸ ©; (4)

where
R(x; x 0) = E (U(x)U¤(x0)) ; (5)

where R is the auto-correlation function acting as a kernel of the integral equa-
tion in Eqn. (4).

Assuming that the ergodicity hypothesis holds [14],method of snapshotsis
used to compute empirical eigenvectors of the problem in Eqn. (4). Due to
the ergodicity hypothesis, eigenvectors of the kernelR (x; x 0) can be represented
through a linear combination of snapshots:

© =
MX

i =1

¯ i Ui : (6)

Coe±cients ¯ i satisfy the eigen-problem:

R¯ = ¤ ¯; (7)

where R is obtained by a simple assembly averaging:

R = lim
M !1

1
M

MX

i =1

Ui (x)Ui (x0): (8)

Eigenvectors of the auto-correlationR de¯ne the POD basis since they are
ortho-normal and individual components of the eigenvalue vector ¤ de¯ne the
importance of associated eigenvectors. If the eigenvaluesare interpreted as the
mean °ow energy of the ¯eld U(x; t) projected to a subspace spanned by the
POD vectors, the relative energy in the i -th basis vector is measured by:

er =
¸ i

P M
k=1 ¸ k

: (9)

The relative energyer is used in the thresholding process by which eigenvec-
tors that represent negligible fraction of the total energyare eliminated, yielding
the truncated representation of the °ow ¯eld:

U ¼
NX

i =1

®i ©i ; (10)

12 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

where N ¿ M .
The newly computed basis in Eqn. (10) is used to represent the°ow ¯eld in

the POD basis. Since the POD eigenvectors are directly related to the energy,
and assuming the truncation in Eqn. (10) is performed so that 99% percent
(or more) of the °ow energy is retained, eigenvectors © represent the coherent
structures in °ow ¯eld.

Coherent structures are the representation of the correlation of the given ¯eld
measured in energy norm, showing important spatial features during the time
period in which the snapshots were taken. This fact allows a new look into time
dependent computation results by revealing a sequence of coherent structures in
the °ow that are not available if time averaging is used instead. This is of great
importance in DNS and LES data, where so far only time averaging was used to
compute correlations. Furthermore, since the POD basis represents the optimal
linear basis in which nonlinear problem can be represented,this procedure is
quite useful in producing reduced order models of the given problem through
Galerkin projection [15].

Advantage of OpenFOAM in the creation of a POD basis for any given prob-
lem is the existence of the ¯eld algebra that allows consistent implementation
of operations described above. Moreover, with the ¯eld algebra POD analysis
becomes an integral part of the library, removing the need for separate POD
development for a speci¯c physics model.

5. Simulation Examples

In what follows we shall illustrate the capability of OpenFOAM at four levels:

² A high-performance linear algebra package, where implementation of new
linear equation solvers bring substantial bene¯t in real simulations;

² A ready-to-use °uid °ow solver for complex physics;

² A library of °exible post-processing and data manipulation tools;

² A °exible and e±cient development platform for complex and coupled
physics simulations.

Results summarised in this section have been reported in other topical publi-
cations { the reader is encouraged to consult the referencesfor a more complete
description of methodology and results.

5.1. LES over a Forward-Facing Step

The ¯rst two sets of results are related to a LES simulation over a forward-
facing step at Re = 10 000, Fig. 2. The actual LES performance of OpenFOAM
has been reported in multiple publications and is not of particular interest.

Two computational meshes are used. A coarse mesh with 660 000cells is used
in single-processor studies, while a ¯ne mesh consisting of 5280 000 cells is used

OpenFOAM for Complex Physics 13

Figure 2. Enstrophy iso-surface coloured by subgrid turbulence kinetic energy for
turbulent °ow over a forward-facing step.

Figure 3. Time-averaged pressure ¯eld
for turbulent °ow over a forward-facing
step.

Figure 4. Time-averaged ux compo-
nent of velocity for turbulent °ow over a
forward-facing step.

Figure 5. Time-averaged uy compo-
nent of velocity for turbulent °ow over a
forward-facing step.

Figure 6. Time-averaged uz compo-
nent of velocity for turbulent °ow over a
forward-facing step.

14 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

to evaluate parallel performance. In both cases, the mesh isaggressively graded
towards the wall. Sub-grid turbulence is modelled using a 1-equation SGS model
[16]. Second-order implicit spatial discretisation is used in conjunction with a
second-order temporal scheme. Maximum Courant number is held at unity and
2 PISO correctors are used with full convergence on the pressure equation.

A LES simulation produces a wealth of data, given the fact that 11; 000
time steps were used to simulate the °ow. A snapshot of an instantaneous
°ow ¯eld is shown in Fig. 2., represented by enstrophy iso-surface (vorticity
magnitude), coloured by the sub-grid turbulence kinetic energy and a centre-line
instantaneous velocity slice. Traditional time averagingof velocity and pressure
¯elds provide an insight into a spatial distribution of mean ¯e lds as shown in
Figs. 3., 4., 5. and 6.

5.2. Linear Solver Performance: CG-AMG Solver

E±cient solution of linear systems of equations stemming from cell-centred
Finite Volume Discretisation is critical for computationa l performance of modern
CFD solvers. A good software package will spend 50-80% of execution time in
linear solvers, making the matrix inversion a natural placeto seek improvements
[17, 18]. Two classes of iterative linear equation solvers are traditionally used,
namely, Algebraic Multigrid (AMG) and Krylov space methods [19].

AMG relies on rapid removal of high-frequency error in stationary itera-
tive methods and accelerates the removal of smooth error components. This is
achieved by creating a hierarchy of progressively coarser linear equation sets by
restricting the ¯ne matrix by agglomeration or ¯ltering [20]. Error restriction
transforms the low-frequency ¯ne level error into a high-frequency coarse error,
where it can be removed e±ciently. After smoothing, the coarse level correction
is prolongated to the ¯ne level, accelerating the solution. In practice, multiple
coarse matrices are created, each responsible for a certainpart of the error spec-
trum. Two single level smoothers has been tested: a symmetric Gauss-Seidel
sweep and Incomplete Lower-Upper decomposition with zero ¯ll-in (ILU).

In contrast to stationary iterative methods, Krylov space methods are charac-
terised by iteration-dependent parameters and non-linearconvergence behaviour
and use preconditioning techniques to achieve convergence. The Krylov space
family encompasses a number of solvers, the most notable being Conjugate
Gradient (CG), Bi-Conjugate Gradient (BiCG), Generalised Minimum Resid-
ual (GMRES) and similar [19]. The idea is that a combination of multigrid and
Krylov space method, with a strong smoother may result in an extremely e±-
cient linear equation solver and will be tested on the solution of the LES pressure
equation from Fig. 2.

Table 1. summaries the performance of top 5 fastest solvers,including the
timing for the ¯rst pressure solution and total time per time- step. First 4 po-
sitions in ranking belong to CG-AMG, with the fastest solver giving a factor of
2:66 reduction in time per time-step over ICCG. This is in line with \raw" solver
speed-up of a factor of 4, since most of the remaining cost is ¯xed.

OpenFOAM for Complex Physics 15

Solver Type p-Eqn Time-step

1 CG-AAMG 4 W, ILU 0/2 11.16 s 28.39 s

2 CG-AAMG 4 W, SGS 0/2 13.63 s 31.97 s
3 CG-AAMG 4 W, ILU 2/2 17.29 s 38.18 s

4 CG-SAMG 4 W, ILU 0/2 17.75 s 40.34 s
5 SAMG, V SGS 0/2 18.04 s 40.21 s

AAMG, 4 W, ILU 2/2 25.82 s 49.42 s

RRE AMG 14.40 s 34.69 s
PFE AMG 14.58 s 33.19 s

MPE AMG 15.94 s 34.34 s

ICCG 44.41 s 75.62 s
AMG 54.17 s 93.97 s

Table 1. Coarse mesh solver performance.

ID Solver Coarsener Cycle Smoother

1 CG-AMG AAMG, 4 W SGS 2/2

2 CG-AMG AAMG, 4 W ILU 0/2
3 PFEAMG AAMG, 4 W ILU 0/2

4 AMG AAMG, 4 W SGS 0/2
5 AMG AAMG, 4 W ILU 0/2

6 RREAMG AAMG, 4 W ILU 0/2
7 AMG AAMG, 2 V SGS 0/2

8 ICCG
Table 2. Solver settings in parallel performance test.

1 CPU 2 CPUs 4 CPUs

ID Iter Time, s Iter Time, s Iter Time, s

1 22 357.0 21 177.9 22 71.2

2 16 233.1 21 160.7 21 91.7
3 27 374.5 30 220.9 28 117.6

4 52 495.3 45 229.0 40 120.8
5 35 480.2 36 261.3 35 145.9

6 23 344.1 35 276.8 38 172.6
7 97 849.9 129 575.0 109 254.9

8 884 2571.3 913 1385.8 970 502.6
Table 3. Fine mesh parallel solver performance.

16 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

The lower part of the table includes the performance of some other acceler-
ated AMG solvers, namely Projective Forward Extrapolation (PFEAMG), Min-
imal Polynomial Extrapolation (MPEAMG) and Reduced Rank Ex trapolation
(RREAMG), [18]. While the RREAMG solver produces substantial performance
improvement over standard AMG, it does so at considerable cost: the algorithm
allocates storage for 5-10 additional vectors of the size ofthe solution. The
CG-AMG solver is still substantially faster than the fastest vector sequence ex-
trapolation result, without the need for additional storag e.

Table 2. lists the fastest linear solver setup for the ¯ne meshparallel test
for a serial, 2- and 4-CPU parallel run. Variation in performance is largest for
ICCG, but some parallel degradation is present for most solvers.

5.3. Proper Orthogonal Decomposition of Instantaneous LES Data

Large Eddy Simulation results are usually analysed by collecting time de-
pendent data and performing time averaging to recover mean ¯elds. In this
way, statistics of the °ow ¯eld can be recovered in terms of meanvalues of the
variables and is consistent with the traditional view that r equired computation
of time-averaged data. This approach is in line with the traditional view of
turbulence modelling through Reynolds averaged equations.

POD allows a di®erent view of the LES data shown in Figs. 2., 3.,4., 5. and
6. In the case of the time dependent data, POD can be deployed for identi¯-
cation of large coherent structures by performing change ofbasis as described
in Eqn. (10). Figs. 7., 8., 9. and 10. show the most energetic mode for the
pressure and components of velocity ¯elds. Comparison between time-averaged
and POD decomposed ¯elds reveals that POD modes contains morestructure in
contrast to time-averaged data which looks smoother. The smooth appearance
of time-averaged data is a consequence of the averaging process and is capa-
ble of representing only the mean structures in a given time interval. On the
other hand, POD data has a more dynamical structure since it represents actual
structures in the °ow ¯eld at a given energy threshold level. This capability of
POD modes stems from the use of the auto-correlation function of the kernel in
expression in Eqn. (4), whose eigenvectors are shown in Fig.7. through Fig. 10..

POD decomposed and time-averaged data represent two complementary ap-
proaches, leading to a better understanding of the °ow features in time depen-
dent simulations. Both approaches represent manipulations of the instantaneous
¯elds with clearly de¯ned mathematical operations consistently implemented in
OpenFOAM. Therefore, switching from a time-averaged to a POD view amounts
to the selection of the mathematical operations to be performed on the data ¯elds
through built-in operators in ¯eld algebra.

5.4. Coupled Simulations: Fluid-Structure Interaction

Most Fluid-Structure Interaction (FSI) simulations today involve a combi-
nation of solvers, usually with a Finite Volume (FV) solver for the °uid °ow, a
Finite Element (FE) solver for the structural analysis and a third code for cou-

OpenFOAM for Complex Physics 17

Figure 7. The ¯rst POD mode of pres-
sure ¯eld for turbulent °ow over a forward-
facing step.

Figure 8. The ¯rst POD mode of ux ¯eld
for turbulent °ow over a forward-facing
step.

Figure 9. The ¯rst POD mode of uy ¯eld
for turbulent °ow over a forward-facing
step.

Figure 10. The ¯rst POD mode of uz ¯eld
for turbulent °ow over a forward-facing
step.

pling, data interpolation and simulation management. This approach imposes
limitations on the mode of coupling and creates problems in model setup.

In this example, OpenFOAM is used to build a self-contained FSI solver,
simulating the interaction between an incompressible Newtonian °uid and a
St. Venant-Kirchho® solid. Fluid °ow is modelled by the Navier-Stokes equa-
tions in an Arbitrary Lagrangian-Eulerian (ALE) formulati on, while the large
deformation of the solid is described by the geometrically nonlinear momentum
equation in an updated Lagrangian formulation.

Spatial discretisation of both models is performed using second-order accu-
rate unstructured FVM, where the °uid model is discretised on the moving mesh
[21], while the solid model is discretised on the ¯xed mesh, updating its con¯g-
uration in accordance with the displacement from the previous time step. Au-
tomatic mesh motion solver [22, 23] is used to accommodate °uid-solid interface
deformation. Temporal discretisation for the °uid and solid models is performed

18 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

using a fully implicit second-order accurate three-time-levels di®erence scheme.

2
0:

5

a = 0 :22

0:
20:
5

0:
5

S
ol

id

Fluid Fluid

S
ol

id

Vi (t)

Vi (t) = V0 + Va sin(2¼ff t)

Vi (t)

f f = f s = 1 Hz
½s
½f

= 100 ; 10; 1

< = V0 a
º f

= 300

Figure 11. Flow-induced vibration: case setup.

Coupling between the two models is performed using a loosely-coupled stag-
gered solution algorithm, where the force is transfered in one direction and dis-
placement in the opposite. OpenFOAM also provides surface mapping tools used
for data mapping between the surfaces, either directly or with second-order in-
terpolation.

The FSI application is tested on the °ow past a cantilevered elastic square
beam with an aspect ratio of 10 at the Reynolds number 300 in a pulsating
velocity ¯eld. Test setup is shown in Fig. 11. Ratio between °uid density and
Young's modulus of the solid is set to match the ¯rst natural fr equency of the
beam with the frequency of the pulsating velocity ¯eld. A snapshot of the
solution during the oscillation is shown in Fig. 12.

Tha main advantage of OpenFOAM over traditional FSI implementations
lies in the fact that a self-contained executable is easier to manage. Further-
more, shared discretisation, mesh handling and linear solver support allows us
to examine matrix-level and even continuum model-level coupling [24], which
would otherwise be impossible.

6. Summary and Future Work

In this paper, we have described class layout of OpenFOAM, anobject-
oriented package for numerical simulation in Continuum Mechanics in C++. On
the software engineering side, its advantage over monolithic functional approach
is in its modularity and °exibility.

OpenFOAM for Complex Physics 19

XY

Z

Z

Figure 12. Cantilevered beam vibration in an oscillating °ow ¯eld.

Object orientation breaks the complexity by building indiv idual software
components (classes) which group data and functions together and protect the
data from accidental corruption. Components are built in families and hierar-
chies, where simpler classes are used to build more complex ones. A toolkit
approach implemented in OpenFOAM allows the user to easily and reliably
tackle complex physical models in software.

Performance and °exibility of OpenFOAM is illustrated on thr ee examples,
including improvements of linear solver technology, analysis of LES results using
Proper Orthogonal Decomposition (POD) and on a °uid-structure interaction
problem.

References

[1] A. K. Slone, K. Pericleous, C. Bailey, M. Cross, and C Benn ett. A ¯nite volume
unstructured mesh approach to dynamic °uid-structure inter action: an assessment
of the challenge of predicting the onset of °utter. Applied mathematical modelling,
28:211{239, 2004.

[2] W. A. Wall, C. Forster, M. Neumann, and E. Ramm. Advances i n °uid-structure
interaction. In K Gurlebeck and C. Konke, editors, Proceedings of 17th inter-
national conference on the application of computer science and mathematics in
architecture and civil engineering , Weimar, Germany, 2006.

[3] M. Lostie, R. Peczalski, and J. Andrieu. Lumped model for sponge cake baking
during the crust and crumb period. J. food eng., 65(2):281{286, 2004.

[4] G. Franco. Development of a numerical code for the simulation of the process
of refractory concrete drying. Master's thesis, Universit ¶a degli studi di Trieste,
Faculty of Engineering, 2005.

20 H. Jasak, A. Jemcov and ·Z. Tukovi¶c

[5] OpenFOAM project web pages. http://www.openfoam.org, 2004.

[6] H.G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensoria l approach to compu-
tational continuum mechanics using object orientated tech niques. Computers in
Physics, 12(6):620 { 631, 1998.

[7] H. Jasak. Multi-physics simulations in continuum mecha nics. In Proceedings of
5th International Conference of Croatian Society of Mechan ics, Trogir , page ??
Croatian Society of Mechanics, September 2006.

[8] Open source initiative web pages. http://www.opensour ce.org, 1987.

[9] Programming languages { C++. ISO/IEC Standard 14822:19 98, 1998.

[10] B. Stroustrup. The C++ programming language . Addison-Wesley, 3rd edition,
1997.

[11] H. Jasak. Error analysis and estimation in the Finite Volume method wi th appli-
cations to °uid °ows . PhD thesis, Imperial College, University of London, 1996.

[12] B.E. Launder and D.B. Spalding. The numerical computat ion of turbulent °ows.
Comp. Meth. Appl. Mech. Engineering , 3:269{289, 1974.

[13] M.M. Gibson and B.E. Launder. Ground e®ects on pressure °uctuations in the
atmospheric boundary layer. J. Fluid Mechanics , 86:491, 1978.

[14] L. Syrovich. Turbulence and and the dynamics of coherent structures. Quart.
Applied Math , XLV(3):561{582, 1987.

[15] P. Holmes, J. L. Lumely, and G. Berkooz. Turbulence, Coherent Structures, Dy-
namical Systems and Symmetry. Cambridge University Press, Cambridge, MA,
USA, 1996.

[16] C. Fureby, G. Tabor, H.G. Weller, and A.D. Gosman. A comp arative study of sub-
grid scale models in homogeneous isotropic turbulence. Phys. Fluids, 9(5):1416{
1429, May 1997.

[17] A. Jemcov, J.P. Maruszewski, and H. Jasak. Performance improvement of alge-
braic multigrid solver by vector sequence extrapolation. I n CFD 2007 Conference,
CFD Society of Canada, 2007.

[18] H. Jasak, A. Jemcov, and J.P. Maruszewski. Preconditioned linear solvers for
large eddy simulation. In CFD 2007 Conference, CFD Society of Canada, 2007.

[19] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial &
Applied Mathematics,U.S., 2003.

[20] U. Trottenberg, C.W. Oosterlee, and A. Schuller. Multigrid . Society for Industrial
and Applied Mathematics, 2004.

[21] ·Z. Tukovi¶c. Finite Volume Method on Domains of Varying Shape . PhD thesis,
Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb,
2005. In Croatian.

[22] H. Jasak and ·Z. Tukovi¶c. Automatic mesh motion for the unstructured ¯nit e
volume method. Transactions of FAMENA , 30(2):1{18, 2007.

[23] ·Z. Tukovi¶c and H. Jasak. Automatic mesh motion in the FVM. 2n d MIT CFD
Conference, Boston, June 2003.

[24] C.J. Greenshields, H. G. Weller, and A. Ivankovi¶c. The ¯nite volume method
for coupled °uid °ow and stress analysis. Computer Modelling and Simulation in
Engineering, 4:213{218, 1999.

